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a b s t r a c t

The objective of this study is to investigate the exposure of different population groups to severe injury
crash hotspots using an empirical-Gaussian two-step floating catchment area (EG-2SFCA) method based
on roadway network distances and a socioeconomic-based weighting approach. This is performed by
developing a special form of a crash-to-population ratio index that incorporates the severe crash hot-
spots relative to the locations of populations they might impact. While identifying these hotspots, four
different age groups are considered: 17 and younger, 18 to 21, 22 to 64 and 65 and older. For each age
group, severe crash hotspots are identified based on the roadway network and the number of severely
injured crash occupants that belong to the specific age group. Using these age-specific crash hotspots and
the EG-2SFCA method, communities that were exposed to elevated crash injury risk (crash injury
exposure) have been identified. Furthermore, from a residential perspective, a socioeconomic analysis is
conducted in order to develop a socioeconomics-based crash injury exposure measure. This measure
assesses the exposure of different socioeconomic groups to the risk of being injured. Results demon-
strated by applying this measure in the Tampa Bay region, FL show that different population groups are
under varying risk of being injured depending on their residential location. The developed approach has
the potential to be a social fairness measure able to be applied by agencies, which could enhance the
well-being of communities that are subject to elevated injury risk.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The Tampa Bay region in Florida, identified as part of District 7
by the Florida Department of Transportation (FDOT), is an impor-
tant development zone, where significant growth is planned and
expected in the future (District 7 Office, 2016). Population growth
will lead to more traffic, and therefore related traffic safety prob-
lems associated with the roadways such as crashes. As such, the
identification of crash hotspots (high crash risk locations) becomes
a critical issue for the populations living near locations where se-
vere injury crashes (involving injuries and/or fatalities) are clus-
tered. Understanding the variable exposure of different
socioeconomic groups to these severe injury clusters can help us
-219, Tallahassee, FL 32310,
manage this growth, and develop better transportation plans and
policies. Therefore, there is a need to evaluate crash injury expo-
sure, especially those associated with fatalities and severe injuries,
accounting for the socioeconomics of the population and available
transportation network in the region.

Many previous studies have focused on problems associated
with roadway crashes. Among those, several studies looked at the
relationships between crash frequency and people's age and de-
mographics given a geo-specific location of the crash involvement
(Abdel-Aty, Chen, & Radwan, 1999; Boyce & Geller, 2002; Krahe &
Fenske, 2002). These studies confirm that driving behavior can be
substantially different between age groups. This behavior is also
relevant with respect to different geospatial considerations. Geo-
spatial models have also been used to analyze and visually assess
spatial roadway crash data. For example, spatial characteristics and
the distribution of crashes on roadway networks have been
examined via various methods such as hotspot detection analysis
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and regression models (Dai, 2012; Gundogdu, 2010; Ulak, Ozguven,
Spainhour, & Vanli, 2017). Additionally, crashes will have an affect
not only on the drivers but also on vehicle occupants. Moreover,
Blatt and Furman (1998), Ulak et al. (2017) affirm a common notion
that people are usually involved in crashes on roadways where they
travel the most. This also implies that people might be involved in
more crashes on roadways closer to their homes where they access
easily (Burdett, Starkey, & Charlton, 2017). Clearly roadways closer
to a given residence would be more likely to be used for trip pur-
poses by the people living in that residence.

Transportation accessibility has also been frequently studied in
the literature. Numerous studies focus on defining and measuring
people's accessibility to various facilities such as supermarkets
(Widener, Farber, Neutens, & Horner, 2015), libraries (Horner,
Duncan, Wood, Valdez-Torres, & Stansbury, 2015), nursing facil-
ities (Saliba, Buchanan,& Kington, 2004), multimodal facilities, and
regular or special needs shelters. Recently, researchers have also
investigated freight accessibility and logistic employment in the
U.S. (Van den Heuvel et al., 2014), and accessibility to freight ter-
minals (Cartenì, 2014; Thomas, Hermia, Vanelslander, & Verhetsel,
2003). There also several pioneering studies that focused on a va-
riety of mathematical models. These methods consists of the
gravity model (Joseph & Bantock, 1982), regional availability model
(Khan, 1992), kernel density models (Guagliardo, 2004), and
floating catchment methods (Luo & Wang, 2003; Radke & Mu,
2000). In the literature, accessibility is defined as the volume and
proximity of services provided to the population of interest or the
services that are available to a certain region or population given
the prevailing transportation system. In this paper, a “crash injury
exposure” measure is developed, which measures how a region or
neighborhood is more or less exposed to crash related injuries
compared to others. For this purpose, a measure of accessibility is
translated into one that captures crash injury exposure (or ‘acces-
sibility’, but in a negative connotation since it is about proximity to
crash hotspots).

Among the existing methods, the two step floating catchment
area method (2SFCA) is very promising in terms of applicability to
“crash vs. population” studies. The pioneering 2SFCA studies were
conducted by Luo and Wang (2003) and Radke and Mu (2000).
Over the last years, several studies have developed methodological
improvements to the traditional 2SFCA approach. For example,
residential segregation in spatial access to healthcare facilities was
investigated in the in metropolitan Detroit area using the catch-
ment method integrating a Gaussian function to continuously
discount access within the catchment areas (Dai, 2010). Another
study proposed to incorporate a kernel function as part of the
2SFCA method in order to capture the variation in each catchment
area for accessibility to food stores in the southwest Mississippi
(Dai & Wang, 2011). On the other hand, 3SFCA (three-step floating
catchment area method) was proposed to account for a reasonable
model of healthcare supply-demand in the Austin-San Antonio area
(Wan, Zou, & Sternberg, 2012). The aim was to reduce the over-
estimation of healthcare demand problem and address potential
competition among suppliers. A modified 2FSCA method has been
published to account for public transport opportunities using
continuous decay functions with a case study in Wales (Langford,
Fry, & Higgs, 2012). An early application of variable catchment
areas proposed a smoother and continuous distance decay function
in Victoria, Australia (McGrail, 2012). The Gaussian function was
also used to account for the continuous distance decay, with a focus
on the accessibility to vaccine sites for rabies in Sao Paolo (Polo,
Acosta, & Dias, 2013). Language barriers and ability of physicians
to accept new patients were also evaluated with this approach in
Ontario, Canada (Bell, Wilson, Bissonnette,& Shah, 2013). In 2015, a
variable catchment method (VFCA) was proposed to conceptualize
the accessibility to parks in multi-modal cities using the attrac-
tiveness of a park as a measure with a case study in Mecklenburg
County of North Carolina (Dony, Delmelle, & Delmelle, 2015). In
another study, Luo (2014) introduced the Huff model into the
catchment method in order to resolve the effect of distance
impedance and supply capacity on spatial accessibility, which was
enhanced by Lin et al. (2016). Clearly there are a wide range of
applications and extensions to the 2SFCA model, as it can be
modified to adapt to a range of scenarios.

Literature suggests that the 2SFCA method generally applies to
situations where there are supply-demand interactions such as
patients' seeking primary care services. In our study, however, the
2SFCA was applied taking a different approach. To elaborate, the
hotspots used in the study, on the one hand, are considered as a
hazard that threatens the public health, which is analogous to the
“supply” in traditional 2SFCA studies. Population, on the other
hand, simply represents the “demand”. Therefore, as long as a
population group has access to this “supply” (i.e. crash hotspots),
that group is exposed to ‘danger’, and hence has a risk of being
injured. Therefore, the 2SFCA approach is utilized to assess this
“crash hotspots-population” interaction, and this type of use of
2SFCA method is novel in transportation planning and trans-
portation geography fields. Note that these hotspots could poten-
tially be replaced with any other hazard that threatens public
health such as crime, pollutants, or any other technological hazard
hotspots (Malleson & Andresen, 2015). The modified model is
applied in the Tampa Bay region of FL.

More broadly, the purpose of this study is to investigate the
proximity of residents living in neighborhoods to severity-
weighted crash hotspots (regardless of the prevailing traffic con-
ditions) rather than identifying roadway sections posing a high
relative crash risk or having unexpectedly high numbers of crashes
with respect to their overall traffic volume. It is important to
emphasize that this is not a crash frequency or crash rate study, in
which adopting traffic volume-normalized crash frequencies would
be clearly more favorable. Additionally, the study does not focus on
the number of trips generated from one point to another, or stated
more broadly, the origin or destination of particular trips. In that
sense, this study defines “crash injury exposure” as the exposure of
the population groups in census units (thanks to the catchment
method employed) to the presence of severe crash hotspots that are
identified based on severely injured occupants involved in acci-
dents. The socioeconomic-based crash injury exposure measure
leads to a weighted “fairness measure” controlling for socioeco-
nomic groups depending on their residential location and, finally
the total number of people in each of these groups.

2. Methodology

Three main steps are identified as part of the approach: (a)
roadway network-based crash hotspot identification for specific
age groups, (b) application of the empirical Gaussian two step
floating catchment area method (EG-2SFCA), and (c) evaluation of
socioeconomic-based crash injury exposure measure (SECIE). Crash
injury exposure is measured by the roadway network distance
between the crash hotspot locations and the geometric centroids of
the U.S. Census blocks. These values are aggregated to higher spatial
scales and used to find a weighed metric for U.S. Census tracts and
counties using the socioeconomic data associated with the census
block groups. Socioeconomic data are based on the American
Community Surveys (ACS) data component and is attached to each
block group (ACS, 2010), which is obtained from the Florida
Geographical Data Library. Variables related to ethnicity, education
level, and the poverty level are collected. In order to visually
illustrate the results, crash injury exposure maps are created in
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ArcGIS 10.2 (ESRI, 2014).
2.1. Study area, population data, and roadway network

The study focuses on the Tampa Bay region in District 7 of
Florida, as identified by the Florida Department of Transportation
(Fig. 1). District 7 has five counties, and two of them are heavily
urbanized: namely Pinellas and Hillsborough counties with
944,971 and 1,325,683 residents, respectively. The other three
counties, Citrus, Hernando and Pasco, are more rural counties with
around 800,000 residents in total. Demographic data are obtained
from the U.S. Census Bureau (U.S. Census Bureau, 2010) and the
Florida Geographical Data Library (FGDL, 2016), which represent
the population counts for 2010. This data contains census tracts and
census block groups, and the latest American Community Survey
(ACS) data attached to each census block group. This ACS data
contains various socioeconomic information, from ethnicity to in-
come, and from vehicle ownership to education level. Note that
District 7 is divided in to 766 census tracts and 2098 census block
groups, 62,939 census blocks (Fig. 1). Moreover, Fig. 2 illustrates
locationswhere each age group are concentrated in the region. Four
different age groups are used in order to identify the severe crash
hotspots for each age group separately: 17 and younger, 18 to 21, 22
to 64 and 65 and older. Note that the U.S. Census data do not
include socioeconomic characteristics pertaining to each age group
at the block group level. For example, it is unknown how many
older (65þ) or younger (17-) adults live below poverty or belong to
a certain ethnic group based on the U.S. Census. Additionally,
roadway network data is obtained from the Tampa Bay Regional
Model (District 7 Office, 2015), which contains the Tampa Bay re-
gion roadway network (Fig. 1-d) and the related traffic information,
through CUBE Software (Citilabs, 2016). This network is utilized to
calculate the network distances between census blocks centroids
and crash hotpots.
2.2. Crash data and hotspot identification

Crash data are acquired from Florida Department of Trans-
portation (FDOT), which covers the period between 2013 and 2014
(FDOT, 2015). The crash data include all crashes that occurred on all
types of roadways (including local and state roads, U.S. highways,
and interstates) within the study area (District 7 of FDOT). To be
clear, all occupants (drivers, passengers, and non-motorists) who
Fig. 1. District 7 model components (a) counties (b) census block groups and cen
were involved in these crashes are included in the network-based
severe crash hotspot analysis. Severe crash hotspots, therefore,
are identified based on the number of severely injured occupants in
that crash and the roadway network distance between crash points.
Note that severe crashes include those that cause non-
incapacitating and incapacitating injuries, and the fatalities. The
FDOT data for District 7 include 99,432 crashes with 231,834 oc-
cupants involved in those crashes, of which 8969 of them are
severely injured (including fatality). Furthermore, the ZIP code lo-
cations of crash occupants are provided in the data, which is used to
determine the decay function used in 2SFCA method (please see
section 2.3.). The urban and rural crashes were distinguished in
order to increase the accuracy of the hotspot identification. In
addition, this study not only focuses on severe crashes but also
different age groups involved in those crashes. The crash hotspots
of different age groups: 17 and younger, 18 to 21, 22 to 64 and 65
and older, are obtained rather than those hotspots for the whole
population. Unfortunately the available US census data (census
blocks) classifications are such that population is broken down into
age groups at certain cut points (0e5, 5e17, 18e21, 22e29, 30e39,
40e49, 50e64 and 65þ). Therefore, we had to work with this age
group breakdown in our study. We merged the 22e29, 30e39,
40e49, and 50e64 age groups into one cohort, and considered this
group as the ‘working age’ class, which spans from post-graduation
from universities to pre-retirement. Similarly, the 0e17 age group
constitutes minors whereas the 18e22 age group includes roughly
college students. Finally, 65þ age group covers the population who
may be beginning and already in retirement. These population
breakdowns into such age cohorts is consistent with previous
studies (Horner et al., 2015). Note that, FDOT crash data do not
include any ethnic or income related information of individuals for
the selected years, and this study does not focus on the “who was
involved in crashes where” question. This is strictly a study of
exposure, where a region's residents risk of being injured in a crash,
based on their proximity (accessibility but in a negative connota-
tion) to severity-weighted crash hotspots, is assessed. Nonetheless,
the use of any socioeconomic characteristics of individuals involved
in crashes is not possible since this type of data is not readily
available.

After processing the crash data, Getis-Ord Gi* (Getis & Ord,
1992; Khan, Qin, & Noyce, 2008) method is utilized in order to
identify the severity-weighted crash hotspots. The number of
severely injured occupants involved in each crash are used as the
sus tracts, (c) geographical centroids of census blocks, (d) roadway network.



Fig. 2. Overview of District 7 demographic characteristics at census block group level (a) 17- population (b) 18e21 population (c) 22e64 population (d) 65þ population.
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weight in the statistic. The ArcGIS 10.2 geoprocessing tool, contains
an implementation of the Gi* statistic which allows the user to
input aweight from a field in their shapefiles, and is used to identify
hotspots that are statistically significant (ArcGIS, 2016). In the
analysis, the same distance band value is not used for urban and
rural crashes since the spatial relationships between urban crashes
(more clustered, distance band: 150 m) are different than rural
crashes (less clustered, distance band: 1000 m) (Blazquez & Celis,
2013; Steenberghen, Aerts, & Thomas, 2010; Xie & Yan, 2013).
This differentiation may lead to more accurate 2SFCA results since
the distance decay parameters likely vary over the study area. For
the Getis-Ord Gi* method, roadway network-based distances are
used, which is convenient since crash points are distributed along
roadway networks.

2.3. Two-step floating catchment area (2SFCA) method

The basis of this effort is the two-step floating catchment area
(2SFCA) method conducted using the roadway network distances.
2SFCA has been employed in a number of studies previously to
assess spatial access to health services. By utilizing a special form of
crash-to-population ratio through a modified 2SFCA method,
namely the empirical-Gaussian 2SFCA, which uses a continuous
distance decay function, a crash injury exposure measure is
defined. This measure is calculated based on the network distance
(proximity) between severity weighted crash hotspots and census
block centroids. The crash injury exposure measure can be viewed
as ‘accessibility’ but in a negative connotation, unlike traditional
approaches where accessibility is defined as the volume and
proximity of services provided to the population of interest or the
services that are available to a certain region or population given
the prevailing transportation system. This negative connotation is
that crash hotspots are considered as a hazard that threatens the
public health, which is analogous to the “supply” in traditional
2SFCA studies. Population, on the other hand, simply represents the
“demand”. Therefore, the 2SFCA approach is utilized to assess this
“crash hotspots-population” interaction, and this type of use of
2SFCA method is novel in transportation geography field.

The 2FSCA method as applied here has three main components:
(a) Population data for each age group (centroids of each U.S.
Census blocks), (b) crash hotspot locations for each age group, and
(c) an empirical-Gaussian decay function. The case specific decay
function was determined based on available crash data and resi-
dences of crash occupants. As such, the distribution of network
distances between the residence (identified by ZIP codes) and crash
locations of every individual involved in crashes were identified.
This provided the following two components/insights: 1) It was
determined that more than 90% of crash occupants were involved
in crashes within 20 network miles from their residential ZIP code
2) an empirical cumulative distribution function (CDF) was utilized
to model a decay function for the proposed approach since it re-
flects how crashes decrease at an increasing the distance from
residences (Fig. 3). As a result, a Gaussian function was fitted to the
obtained complementary CDF, also called a survival function, in
order to obtain the case specific decay function. The 20 mile dis-
tance, calculated using network distances, was adopted as the
threshold for the catchment network of each census block. That is,
severity-weighted crash hotspots within 20 miles of a census block
centroid, together with the decay function, were used to calculate
the crash injury exposure. The reason behind employing a distance
decay is that crashes should not impose the same risk at all dis-
tances, as populations are likely to be more exposed to crashes
nearby, which is consistent with the literature (Burdett et al., 2017).

The approach taken here utilizes the following empirical-
Gaussian form of the model previously developed, and employed
in past studies (Dai, 2010; Kwan, 1998; Luo & Qi, 2009; McGrail,
2012) as follows:
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where the parameter values of decay function are given in Table 1.
Note that all these steps are conducted for each age group, and

all the distances are based on roadway network. . It is worth
mentioning that Wang and Langford (Langford et al., 2012; Wang,
2012) suggest that it is unclear which function is the most appro-
priate to use as a distance-decay function without any empirical
evidence, therefore it remains a matter of choice. Wang (Wang,
2012) defines six different distance decay functions. However, in
this study, locations of crashes and crash occupants’ residences are
utilized to estimate a case-specific function. As seen from Equation
(2), this study employs a continuous distance decay function to
define G (decay weights). This type of approach can help us
differentiate the crash injury exposure inside the catchment
threshold network distance. Fig. 3 shows the empirical CDF, com-
plementary CDF (survival function) and the decay weights used to
calculate the crash injury exposure for different age groups based
on census blocks and severe crash hotspots.

Note that the entire analysis is executed for different age groups
at census block levels. However, all the socioeconomic information
used in this paper (ACS, 2010; FGDL, 2016) is provided at a census
block group level. For that reason, crash injury exposure for each
census block group is calculated based on different age groups by
using the population-weighted averages. The following sectionwill
continue with the explanation of the proposed Socioeconomic-
based Crash Injury Exposure Measure (SECIE).

2.4. Socioeconomic-based crash injury exposure measure

In this paper, a socioeconomic-based crash injury exposure
measure (SECIE) is derived for each age group by weighting the
crash injury exposure (Ai) measures obtained from the EG-2SFCA
method, and the specific socioeconomic data associated with
each census block group. This socioeconomic data, based on
American Community Surveys (ACS) of the U.S. Census (ACS, 2010;
FGDL, 2016), is attached to census block groups, and includes in-
formation on the ethnicity, poverty, vehicle ownership and edu-
cation levels of residents. Using aggregation, the SECIEmeasurewill
help to compare census tracts and counties in terms of their crash
injury exposure. SECIE uses the concept of the weighted average as



Fig. 3. The empirical CDF, complementary CDF (survival function), and the decay function.

Table 1
Decay function parameter values.

Parameter Values a1 ¼ �36.05 b1 ¼ �0.1759 c1 ¼ 12.71 k ¼ 0.063
a2 ¼ 37.15 b2 ¼ �0.443 c2 ¼ 12.88
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follows:

SECIEz ¼
Pn

i¼1

�
Aa;i;z*Popt;i;z

�
Pn

i¼1

�
Popt;i;z

� (3)

where Aa,i,z is the crash injury exposure of specific age group, “a”
living at census block group “i” pertaining to census tract “z”, and
Popt,i,z is the number of people living in the census block group “i”
pertaining to census tract “z”, “t” is the socio economic attribute
that SECIE is executed for. For instance, Poppoverty,i,z represents the
number of people living below the poverty level in census block
group “i” pertaining to census tract “z”. It is important to mention
that US census provides the total number of 65þ (65 and older
people) but not the African-American age 65þ population in a
census block group. SECIE provides a way to incorporate those two
attributes. Note that the census tract denoted by the subscript “z”,
can simply be thought of as a more aggregate spatial unit than the
underlying calculations are based (i.e. block groups). In this anal-
ysis, “z” can also be used as the designation for counties to provide a
SECIE index for that level of aggregation.

The final product gives a crash injury exposure score for census
tracts or counties based on each socioeconomic-age group rather
than simply different age groups. Note that SECIE is not an algo-
rithm but rather a weighted mean. In a weighted average, some of
the data points contribute more than others to the final average.
Note that this calculation is performed for each type of age group
separately. The socioeconomic-based crash injury exposure mea-
sure (SECIE) leads to a weighted “fairness measure” controlling for
socioeconomic groups depending on their residential location, and
finally the total number of people in each of these groups. This
metric also acts as an indicator to quantify and compare social
sustainability between different regions (Vallance, Perkins, &
Dixon, 2011) That is, if a census tract or county possesses an
elevated crash injury exposure, this can be considered as socially
unsustainable for residents. These results are potentially beneficial
for agencies and stakeholders seeking to effectively allocate re-
sources to people facing elevated risks.

3. Results

In this section, results of our application to District 7 of Florida
are presented. First, severe crash hotspots were identified for
different age groups. After that, the crash injury exposure of the
regions was analyzed, and GIS-based maps were produced. This
type of visualization approach can offer a better understanding of
areas subject to greater risk. Finally, socioeconomic data were used
to create the weighed crash injury exposure maps for each age
group.

3.1. Hotspot identification

The hotspot analysis was conducted for 2013e2014 crash data
using roadway network distances. Results of the hotspot analysis
illustrate that even though hotspots of different age groups have
slightly similar spatial patterns, there is still noteworthy spatial
variation between severe crashes of different age groups (Fig. 4).
That is, a strong visual spatial correlation between hotspot distri-
butions of the age groups under consideration cannot be observed.
Nevertheless, it is obvious that all age groups have a number of
hotspots in the western Pasco County, parallel to the coast where
US-19 lies alongside. Besides that, the hotspots associated with the
22e64 age group are more concentrated around the City of St.
Petersburg as well as eastern section of Pasco County than any
other age group. However, fewer number of 22e64 age group
hotspots were identified in the northern of District 7. Hotspots of



Fig. 4. Severe crash hotspots for different age groups, (a) 17-, (b) 18e21, (c) 22e64, (d) 65þ.
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the 18e21 age group, on the other hand, are clustered in St.
Petersburg in southern Pinellas County, and particularly on the
middle sections of Hernando County. Likewise, different patterns
are observed for hotspots of 17 and younger and the 65 and older
age groups as well. For example, four distinct locations appear to
contain areas where age 65þ hotspots are concentrated: South of
Hillsborough County, coastal parts of Hernando County, Largo City
in Pinellas County, and Citrus County in general. Note that there is
an obvious cluster consisting of the 17- hotspots in the northeast of
Tampa. This is important because there is no other such high
concentration of hotspots in proximity of that region. It can be
argued that special attention should be given to those crashes at
that location in order to identify the probable reasons for the severe
injuries to younger roadway users. This clear difference in the lo-
cations of crash hotspots implies that there is a need to focus on
individual age groups rather than the overall population.
3.2. Two step floating catchment area method

When 2FSCA method is applied to crashes, the emphasis is not
on the accessibility but crash injury exposure. The exposure mea-
sure for census blocks (centroids) are illustrated in Fig. 5 whereas
Fig. 6 shows the population weighted exposure measure for census
block groups. Note that there are highly similar spatial patterns in
Figs. 5 and 6. Thus, the discussion is only made for census block
groups (note that census block groups are actually groups of census
blocks). According to Fig. 6, for the 17- populations, the west and
east sections of mid-District 7 and around northeastern parts of
Tampa as well as southernmost Hillsborough County are shown to
be exposed to elevated injury risk based on the standard deviation
on the mean classification approach. Since this is an occupant-
based study, families with children seem to be experiencing high
crash injury risk around those locations where generally 17- groups
populate densely such as southernmost Hillsborough and eastern
Pasco (Fig. 2). For the 18e21 years old residents, who are often
times college students, crash injury exposure is experienced more
on the northwest section of District 7. Moreover, an elevated crash
injury risk exists in the whole middle section of District 7, where
Pasco County is, for this young age group as evidenced by the
observed high deviation from themean exposure value. One reason
for this findingmight be the presence of several colleges such as the
Pasco-Hernando State College, which in turn exposes college age
group occupants to severe injury risk.
The crash injury exposure map of working class (22e64), on the
other hand, shows that the residents of this group experience
elevated crash injury exposure at western Pasco County. These
areas are usually the locations where businesses and work offices
are commonly present, which attracts working class people to
reside in these regions. This finding, combined with higher number
of severe crashes involving working class occupants, indicates that
these regions are prone to higher crash injury exposure. For the 65
and older people (65þ), there are three areas with high crash injury
exposure: the southeast of District 7, and the northwest section
along the US-19 and US-98 corridor, where a substantial number of
65þ residents is located. Note that, in Fig. 2, the number of
65þ residents living in each census block group is given. Fig. 2
shows that the census block groups with higher number of aging
residents correspond to the findings shown in Fig. 6-d with slight
differences (e.g. northernmost Citrus County). The reason of this
slight difference is because Fig. 6 illustrates the integrated effect of
both population and the severe crash risk (hotspots). Therefore,
while there is a high number of 65þ residents in the northernmost
part of District 7, that region is not the one of the higher exposed
areas based on the mapping classification approach. It is worth
mentioning that the most problematic region in terms of crash
injury exposure, for all age groups, is the western Pasco County
where one finds US-19 and US-98. This information might inform
transportation agencies in their efforts to enhance public safety in
that region since it is critical for all age groups.
3.3. Application of the socioeconomic-based crash injury exposure
measure

In this section, socioeconomic data were integrated into the
analysis using the ‘SECIE’ index, in order to create age-specific
weighted crash injury exposure maps primarily for each U.S.
census tract (Figs. 7 and 8 show example maps), and then for each
county in the study area. Using this approach, for example, the
counties and census tracts can be compared to each other in District
7 based on their associated crash injury exposure and socioeco-
nomic variables.

Several important outcomes related to the socioeconomic
characteristics of people in the region are observed. For instance,
for 17 and younger African American populations living in the
eastern and western section of mid-District 7, a high deviation from
mean in crash injury exposure is observed, which is similar to all 17



Fig. 5. Crash injury exposure maps for different age groups at census block (centroids) level a) 17- b) 18e21 c) 22e64 and d) 65þ.
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Fig. 6. Crash injury exposure maps for different age groups at census block group level a) 17- b) 18e21 c) 22e64 and d) 65þ.
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Fig. 7. Socioeconomic characteristics-based crash injury exposure maps for age groups at census tract level (a) 17 and younger for below poverty level, (b) 17 and younger for
African American populations, (c) 18e21 for poverty level, and (d) 18e21 for African American populations.
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Fig. 8. Socioeconomic characteristics-based crash injury exposure maps for age groups at census tract level (a) 22e64 with education level, (b) 22e64 for minority populations, (c)
65þ with education level, and (d) 65þ with poverty level.
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Fig. 9. County-based crash injury exposure ranking maps for the age groups of 22e64 and 65þ, respectively: a) e b) education level, c) e d) minority, e) e f) poverty.
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and younger populations below poverty (Fig. 7-a). The college age
group (18e21) that is below poverty level and from African-
American decent, on the other hand, are more exposed to crash
injury in the middle as well as northwestern sections of District 7
(Fig. 7c and d). When this finding is incorporated with the findings
of Males (2009), who showed that joint effect of age and income-
related attributes is the main contributor of young driver fatal-
ities, these identified regions can be considered as highly critical for
preventing younger population fatalities. Note that, spatial differ-
ences between different locations where these population groups
live is the main reason behind this elevated exposure. This
knowledge is important since agencies could take countermeasures
specific to that location to mitigate injury risk exposed on that
socioeconomic group. For the working age group (22e64), a sub-
stantial difference is observed when the weight of education and
ethnicity (Fig. 8a and b) is evaluated compared to the overall crash
injury exposure findings for this group (Fig. 6-c). The identified
spatial differences (such as eastern and middle Pasco County) are
critical since fatalities were found to be increasing by decreasing
education levels (Stamatiadis& Puccini, 2000). Moreover, there is a
considerable difference in the effect of being a minority population
on crash injury exposure compared to the effect of education level.
That is, there is a shift in being exposed to crash injury along the
east-west direction (in Pasco County) when the minority dimen-
sion is considered instead of that of education level. Additionally,
for the 65þ age group, the effect of education and poverty seem to
provide substantially different crash injury exposure maps. For
instance, crash injury exposure of the northwest section of District
7 increases with poverty. This shows that people belonging to this
age group, particularly ones that live below the poverty level, might
be exposed to an elevated crash injury risk around the north-
western section of District 7. It is also worth mentioning that, crash
injury exposure maps for the census block groups are quite similar
to SECIE maps (poverty and African-American) for 17- (Figs. 6a and
7a-b) as well as those for the 18e21 age groups (Figs. 6b and 7c-d).
Crash injury exposure maps and the SECIE maps for populations
22e64 (Figs. 6c and 8a-b) and 65þ (Figs. 6d and 8c-d), on the other
hand, are quite different from each other.

Note that, socioeconomic measures were carried out in order to
identify which groups are unfairly exposed to crash injury risk. That
is, for instance, if there is a highly populated African-American
community in proximity to a severe crash hotspot, this is an envi-
ronmental justice issue, which is different than claiming that
members of this community are involved in more crashes
compared to others. Groups higher in number for a specific block
group, due to the weighting function inherent to the model, ulti-
mately will be exposed more risk of being injured than other so-
cioeconomic groups, geographically speaking. In that sense, the
crash injury exposure measure is particularly a “fairness measure”.
For any geographical unit at any level studied in the paper, the
approach estimates an exposure measure geographically based on
socioeconomics and accessibility.

When the same methodology was applied to calculate the
weighted crash injury exposure for each county, maps like those in
Fig. 9 were obtained. In this section, comparison maps for the
22e64 and 65þ age groups are presented. The SECIE approach is
further extended to derive a crash injury exposure and compare
counties, accounting for the socioeconomic characteristics and
crash hotspots contained therein. Results indicate that there is a
spatial variation in the “county with highest exposure to crash
injury risk” for people attended high school at most (no college)
according to the previously selected standard deviation frommean
classification approach. For instance, Hernando and Pasco counties
are the ones posing the highest crash injury risk for the 65þ age
group with no college education by deviating significantly from
mean compared to other counties in the region. On the other hand,
in Pasco County, the crash injury exposure for the age 22e64 class
with no college education is significantly higher with values 0.5 to 1
standard deviation above themean compared to other counties. For
the 65þ age group including the minority population, like the no
college education case, Hernando and Pasco County stands out
among others with a 0.5 and higher standard deviation frommean.
For the age 22e64 age group with including the minority popula-
tion, Pasco County shows the highest deviation from the mean
compared to others, which indicates that the post-graduation and
pre-retirement age group, who are also minorities, are exposed to
the highest crash risk in that region. When investigating the data
based on poverty levels, Pasco County has the highest deviation
from mean in terms of crash injury exposure for both the 65þ, and
the 22e64 age groups. Note that different age groups are exposed
to different level of crash exposure depending on the same socio-
economic variable investigated. This indicates that there is spatial
variation based on crash exposure of different age groups and socio
economics. To conclude, for all three classes (no college education,
poverty, and minority) and for both 65þ and 22e64 age groups,
Pasco County as appears to be a region of interest for transportation
agencies in order to address and investigate the crash exposure
risks for those populations.

4. Conclusions and future work

The objective of this study is to investigate the exposure of
different population groups to severe injury crash hotspots using an
empirical-Gaussian two-step floating catchment area (EG-2SFCA)
method based on roadway network distances and a socioeconomic-
based weighting approach. In other words, the study examines the
proximity of residents living in neighborhoods to severity-
weighted crash hotspots (regardless of the prevailing traffic con-
ditions) rather than identifying roadway sections posing a high
relative crash risk or having unexpectedly high numbers of crashes
with respect to their overall traffic volume. This is performed by
developing a special form of crash-to-population ratio that in-
corporates the severe crash hotspots and population. Results indi-
cate that crash injury exposure changes with respect to age,
ethnicity, education and poverty level, and vehicle ownership in
the study area. Identifying regions with elevated crash injury
exposure can allow transportation agencies to more effectively
pinpoint locations to be addressed, and allocate necessary re-
sources to reduce risks to the public. This type of methodology can
be easily implemented by transportation planning agencies else-
where to identify problematic areas. For instance, the most prob-
lematic subarea, for all age groups, in terms of crash injury
exposure is the western Pasco County where US-19 and US-98 lie
along. This information might be very important for transportation
agencies in order to enhance the safety of public in that region since
it is critical for all age groups.

There are several limitations associated with this study that
should be noted. While the empirical-Gaussian 2SFCA imple-
mentation provides amathematical result for any demographic and
geographic unit like a census tract or census block group, it pro-
duces outputs which are best utilized in a comparative fashion
among various spatial units, rather than a unit-specific index which
is substantively meaningful on its own. The purpose of this study is
to develop a new approach in order to quantify possible crash
exposure on the population from a residential perspective, which is
a novel perspective in the transportation safety field. The work
truly is on development of an index; however, a quantitative vali-
dation of findings herein is a natural next step for future research.
Validation might entail regressing the metric to determine if the
residential areas identified as being high risk do contain people
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who have been in crashes, after controlling for other factors.
Another future direction can be a more thorough categorization of
roadways while identifying crash hotspots, such as differentiating
between freeways, arterials and other roadways in addition to the
urban versus rural designation. Lastly, given the nature of the work,
it would be potentially fruitful to interact with governmental
agencies and experts such as city DOTs, Council of Governments
(COGs), or Metropolitan Planning Organizations (MPOs) regarding
the results of this research. This will facilitate the discussion of
possible remedial measures that can be used to assess the various
challenges presented in this paper under the varying risk of being
injured based on statistically significant clusters of injured vehicle
occupants in crashes.
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